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Abstract. How might pre-evolved communicative dispositions affect how in-

dividuals learn to communicate in a novel context? I present a model of
learning that varies the reward for coordination in the signalling game frame-

work under simple reinforcement learning as a function of the agents’ actions.
The model takes advantage of a type of modular compositional communicative

bootstrapping by which the sender and receiver use pre-evolved communicative

dispositions—a “yes/no” command—to evolve new dispositions.
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Introduction

The signalling game was introduced by Lewis (1969) to explain how commu-
nication conventions might arise without having an antecedent language in place
to agree upon the convention.1 We suppose that there are two players, called the
sender and receiver. Nature picks a state of the world at random. The sender
observes the state of the world and chooses a signal from a set of arbitrary (in
the sense of lacking pre-existing salience) signals. The receiver observes the signal,
though not the state, and chooses from a set of possible actions. Payoffs are jointly
determined by state and the action.

The signalling game has been modified using evolutionary dynamics (Skyrms,
1996, 2010). A simple model, which we will concern ourselves with in this paper,
is Roth-Erev reinforcement learning (Roth and Erev, 1995; Erev and Roth, 1998),
which has a long psychological pedigree and is a standard learning model in be-
havioural psychology.2 Under this dynamic, the probability of an actor’s choosing a
particular action is proportional to the accumulated reward for that action.3 Con-
sider an atomic 2 × 2 signalling game—where there are 2 equiprobable states (s0
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2See, for example, Bush and Mosteller (1955); Suppes and Atkinson (1960); Arthur (1993); Börgers
and Sarin (1997, 2000); Bruner et al. (2018). For an overview of reinforcement learning from a
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2 TRAVIS LACROIX

and s1), 2 signals (m0 and m1), 2 actions (a0 and a1), and the reward for coordina-
tion is given by u(si, aj) = δij .

4 I will sometimes refer to this as an atomic 2-game,
and in general, for an arbitrary number of signals and state-act pairs, an atomic
n-game.5

This can be illustrated simply by an urn-learning procedure. We assume that
the sender has an urn for each of the two states—labelled s0 and s1. Similarly, the
receiver has an urn for each of the two messages (signals)—labelled m0 and m1. At
the outset of the game, each of the sender’s urns is equipped with one ball for each
possible message at her disposal—m0 and m1. Similarly, each of the receiver’s urns
contains a ball for each of her possible actions—a0 and a1.

On each play of the game, the state of the world is chosen at random. The sender
then chooses a ball at random from the urn corresponding to the state of the world
and sends that message to the receiver. The receiver then chooses a ball at random
from the urn corresponding to the message received. If the action matches the
state of the world, then the sender and the receiver both reinforce their behaviour
by returning the ball to the urn from which it was chosen, and additionally adding
another ball of the same type to the urn from which the original ball was chosen.
If the action does not match the state, then each player simply returns the drawn
ball to the urn from which it was drawn.6 The game is then repeated.

A sender strategy is a function mapping states to a probability distribution over
signals; a receiver strategy is a map from signals to acts. The dynamic shifts
strategies to the extent that adding balls to an urn for a successful action shifts
the relative probability of picking a ball of that type on a future play of the game.
Adding balls to a particular urn changes the conditional probabilities of the sender’s
signals (conditional on the state) and the receiver’s acts (conditional on the signal).
Thus, the players are more likely to perform actions that were previously success-
ful. In this special case, the sender and receiver will coordinate upon a signalling
system—a pair of sender and receiver strategies whose composition maximises the
possible expected payoff—with probability 1 (Argiento et al., 2009).

However, sender and receiver strategies can also be pooling. In complete pooling
equilibria, the sender sends signals with probabilities that are independent of the
state. Similarly, the receiver chooses actions independent of the signal received.
Thus, the probability of an action is independent of the state of nature. When
there are more than two possible states, signals, and actions, there are also partial
pooling equilibria where some, but not all, of the states are pooled.7 When n >
2, these partial-pooling equilibria have a basin of attraction of positive measure
(Pawlowitsch, 2008; Hofbauer and Huttegger, 2008).8

4δij is the Kronecker delta, defined as

u(si, aj) = δij , δij =

{
1 if i = j

0 else
.
5This terminology is due to Steinert-Threlkeld (2016).
6In the most basic case, there is no penalty for miscoordination, though it is possible to model
punishment by discarding a ball when it led to a failure.
7Note that in general, there are n! possible signalling systems in the n×n signalling game (Lewis,

1969), but there are n2n possible combinations of strategies (Huttegger, 2007a). Thus, the number
of possible strategies quickly outpaces the number of possible signalling systems as n increases.
8Note, this result is under a slightly different dynamic, called the replicator dynamic (Taylor
and Jonker, 1978). However, there is a close relation between the replicator dynamic and the

reinforcement learning dynamic presented here: Beggs (2005) and Hopkins and Posch (2005)
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Partial pooling is undesirable to the extent that it is inefficient. It is, perhaps,
further undesirable insofar as the signalling game framework is supposed to give
a plausible evolutionary explanation of how communication might actually have
arisen in nature, rather than a just so story. Partial pooling can be avoided by,
e.g., altering the underlying dynamic; however, there is a trade-off here between the
explanatory power of a model and the results obtained by the model.9 Thus, we
have a twofold desideratum: to avoid partial-pooling while maintaining empirical
sensitivity to the potential precursors of linguistic communication.

Communication is a unique evolutionary process in the following sense: once
a group of individuals has learned some set of simple communication conventions,
those learned behaviours may be used to influence future communication, giving rise
to a feedback loop. This results from the reflexivity of natural language: Languages
can be used to communicate about languages (Hockett, 1963). When faced with
a novel context, an evolutionary agent can always evolve a brand new disposition
from scratch. However, might the sender and receiver in a signalling context not
take advantage of pre-evolved dispositions in order to help them learn to signal
more efficiently? In this paper, I present a model of learning that varies the reward
for coordination in the signalling game as a function of the agents’ actions. The
model takes advantage of a type of compositional communicative bootstrapping by
which they use pre-evolved communicative dispositions to learn new dispositions.

We might note that coordination for the purpose of communication is generally
goal-directed. This need not be understood in terms of something as high-level
as, e.g., intentions. For example, in the cue-reading game—a modification of the
signalling game where the sender has a fixed set of dispositions which the receiver
must learn to interpret (in the sense of “react to”) in the appropriate way (Barrett
and Skyrms, 2017)—the receiver’s goal is to interpret the sender’s cues correctly;
the sender, on the other hand, is static—she does not have a goal in the way the
receiver does, but reacts in a fixed way to the states of nature, regardless of whether
the receiver interprets her actions correctly.

However, might the sender in the cue-reading game not also have a goal—namely,
for the receiver to understand her fixed signalling disposition. How might she
achieve this goal? If she can communicate that her signal means such-and-such, then
this would help the receiver toward the goal of interpreting the signal appropriately.
However, this would be putting the cart before the horse, so to speak: the entire
premise of the signalling [cue-reading] game is that we do not presuppose the sender
is able to communicate the meaning of her signal [cue]; rather, it is precisely the
“intended” meaning, based on the sender’s signalling disposition, that the receiver
must learn. In the signalling game, the meaning of the signal co-evolves as a
function of both the sender’s and receiver’s respective dispositions. If the sender
could communicate her disposition, then the sender and receiver would have already
arrived at a signalling convention.

Suppose that the sender and receiver have already evolved a signalling system in
some other context. Might the sender not then use those communicative capacities
to try to express to the receiver what her meaning is in the new context? This does
not presuppose that the sender and receiver have already solidified the meanings

show that the mean-field dynamics of Roth-Erev learning is a version of the replicator dynamic.

See also, Barrett (2006).
9See, for example, D’Arms et al. (1998), and the further discussion in LaCroix (2018a).
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of the signals in the main context; rather, when the receiver fails to perform the
action that the sender wants her to perform (i.e., the one that is appropriate for
the particular state), the sender may be able to communicate that the receiver did
something wrong.10

The following story makes more clear the sort of phenomena that I have in
mind here. Consider two actors in a signalling context. Suppose they have al-
ready evolved up some rudimentary communicative capacity. For example, they
may have learned how to communicate some simple command for an action. This
might be interpreted, at least for the purposes of this story, as a command that
represents some holophrastic binary distinction—e.g., “stop/go”, “yes/no”, “cor-
rect/incorrect”, “true/false”, “right/wrong”, etc.11

In such a context, there are two relevant states of the world, with corresponding
appropriate actions, and there are two possible signals to represent these state-act
pairs. One or the other signalling system will evolve with certainty, given that
this is a 2 × 2 signalling game. Now, if we imagine this sort of communicative
context has already evolved, it stands to reason that individuals in a new signalling
context (where no dispositions have yet evolved) might learn to take advantage of
their previously evolved communicative convention in the following sense. Suppose
the sender and receiver are in a novel signalling context, where they must evolve
dispositions from scratch. In the normal signalling game model, they may learn
to coordinate upon a signalling convention simply by trying things and reinforcing
those actions that led to a success.

However, since (ex hypothesi) they have already evolved a communicative dispo-
sition to communicate that an action is appropriate or not, they already have at
their disposal a signalling game which takes a correct or incorrect action as input
and outputs a signal that states that the action was correct or incorrect: when an
agent performs an incorrect action, the “state of the world” is such that it would be
appropriate for the sender to send the “no/stop/wrong” signal, which the receiver
will appropriately interpret—since she already understands this signal. Thus, mis-
coordination in our new context is an appropriate input for the pre-evolved context.
This is exactly the notion of modular composition discussed in Barrett and Skyrms
(2017). Therefore, on the presupposition that the actors have already evolved such
a capacity, they need only to be able to compose the two separate games into a
single game in order to communicate that, e.g., corrective action should take place.

Below, I present several variations of a base model, which I will call the cor-
rection game, that are built on this intuitive story, and analyse the results of this
ability to take advantage of a previously evolved disposition. In particular, I com-
pare learning rates and occurrence of suboptimal partial-pooling equilibria with the
atomic signalling game of the same dimension, where the individuals do not take

10There is a lot of intentional talk in this paragraph; however, I take this to be harmless for the

reasons given by Dennett (1971, 1987); according to Dennett (1971), presupposing beliefs and
desires on the part of such an agent—one who is not rational, per se—is a form of “conceptually
innocent anthropomorphizing” (93). It should be fairly clear that I am not presupposing, as a

matter of fact, that a sender or receiver in the signalling game have any human-level cognitive
capacities.
11Note that equally a command, or imperative, in a signalling system can be interpreted as
an indicative statement. We will not worry about this distinction too much here, but see the

discussion in Harms (2004a,b); Millikan (2005); Huttegger (2007b); Zollman (2011).
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advantage of a previously evolved disposition, to show whether and in what ways
this is advantageous to the players.

1. The Correction Game Model

Before getting into the details of how the model works, we might consider the
following “high-level” interpretation of what is going on here. Suppose two agents
want to communicate. We model this with a signalling game of some arbitrary di-
mension, depending upon the case under consideration. The sender sends a signal
to the receiver in an attempt to transfer information about the state of the world.
Suppose the receiver performs an action that is inappropriate for the state under
consideration. In the normal signalling game model, they move on and a new state
of the world is chosen for a new attempt. However, suppose with some probability
the sender tries to correct the action. Note that this, in a sense, presupposes that
the sender “knows” what the correct action is; however, this is not problematic
because if the sender were the one attempting the action, she has perfect infor-
mation about the state of the world and so, even if she does not know a priori
what the correct action is, she could hit upon the correct action quickly via some
simple trial-and-error experimentation—the purpose of the signalling game model
is to show how such state-act pairs might become associated with signals, thus giv-
ing rise to information transfer. So, rather than moving on to a new round, with
some probability the sender will attempt to take advantage of a previously evolved
communicative capacity for the purpose of “correcting” the inappropriate action of
the receiver.

We will start by supposing that the agents in the signalling game have al-
ready evolved up some command capacity, which we will take to be analogous,
in some respect (i.e., the intended outcome action of the command), to “stop/go”
or “right/wrong” or “yes/no”, etc.

This model is built upon the base of a normal atomic n-game, discussed in the
introduction. The correction game proceeds as the atomic n-game normally does:
nature picks a state of the world without bias, the sender chooses a signal at random,
and the receiver chooses an action at random. If they coordinate, they receive payoff
1, and shift their dispositions proportional to their accumulated rewards. However,
the correction game diverges from the atomic n-game when the sender and receiver
miscoordinate. When the actors fail to coordinate, the sender attempts to “correct”
the action in question, with some probability, µ. Namely, with probability µ, the
agents take advantage of the previously evolved capacity to direct actions via some
command—i.e., the sender takes the failure as input for the sub-game, and sends
the pre-evolved signal corresponding to “wrong”. With probability (1 − µ), they
simply move on to the next play of the game, as they normally would, with payoff
0.

Thus, the reward is 1 for one-shot coordination, and if the actors fail and abandon
their failure (probability (1 − µ)), then the reward is 0. This “segment” of the
correction game is just the normal signalling game procedure with payoff 1 for
coordination and no punishment for miscoordination. The main difference between
the correction game and the signalling game is that there is a chance (µ) that the
receiver attempts a new action, with the state and the signal remaining fixed. This
is under the assumption that, in light of the failure, the sender sends the additional
signal that the receiver has done something “incorrect”, as it were. (Note that if the
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underlying command is already evolved to a signalling system, then we can assume
the sender and receiver always coordinate on this signal—i.e., the receiver knows
how to react to the additional command, by, e.g., trying something new, since this is
a pre-evolved disposition.) This extra command from the sender gives the receiver
complete knowledge that the particular action she chose was incorrect for the state;
however, she still lacks complete knowledge about which of the remaining actions
is appropriate for the state. Thus, this set-up does not presuppose anything about
the meanings of the signals being evolved in the main game, nor the sender’s ability
to communicate these meanings.

There are several possible ways of modelling this process. I will suggest the
following. For each run, we will take the reward on the first “cycle” to be the usual
reward for coordination: u(s, a). If the sender tries to correct the receiver’s action,
due to miscoordination, then the sender and receiver will get some discounted
reward conditional upon coordination. This will be given by a discount factor,
γ ∈ [0, 1]. This discount might be understood as decreasing marginal utility for
the additional cost of having to play an extra game—i.e., taking the time to try to
correct the receiver’s action. For γ = 1, we have cost-less correction. For γ = 0,
this extended game reduces to the normal atomic signalling game. Thus, the full
specification of the reward is given by Rtn = γn · u(s, a)—the reward, R, on the
nth cycle, tn.

To make clear what I have in mind here, consider the following possible play.
Suppose we have a discount factor, γ = 1

2 , and a base-payoff, u(s, a) = 1, for
coordination. The signalling game begins as normal. Nature picks a state of the
world, the sender picks a signal, the receiver picks an action. If they coordinate,
then they both receive a payoff of 1, and they move on to the next play. If they
miscoordinate, then with probability (1 − µ), they receive a payoff of 0, and they
move on to the next play. However, with probability µ, if they miscoordinate, then
they play a “correction game”, which can be understood as the sender utilising a
previously evolved capacity to inform the receiver that she did something wrong.
Here, we assume they always coordinate on the correction game, since it is a pre-
evolved 2 × 2 game, so the receiver tries a new action—namely, if A is the set of
actions available to the receiver, and if action ai ∈ A led to a miscoordination,
the receiver samples stochastically from the set A − {ai}, with an associated re-
normalised probability distribution ∆(A−{ai}). Suppose the action chosen on the
first repetition is aj .

If the sender and receiver coordinate on the first repetition, then they both
receive a discounted payoff Rt1 = γ1·u(s, a) = 1

2 . If they miscoordinate, then, again,
with probability (1−µ), they abandon the attempt to coordinate, receive payoff 0,
and move to the next play. Again, with probability µ, the sender tries to correct the
receiver a second time. The receiver tries a new action, sampled from the set A−
{ai, aj}, with an associated probability distribution ∆(A−{ai, aj}). If coordination
occurs on the second retry, the sender and receiver get a discounted payoff of
Rt2 = γ2 · u(s, a) = 1

4 . This continues with the general discounted reward being
given by Rtn = γn ·u(s, a) for n attempts to correct the action. See Figure 1. Note
that the sender strategy (and the state of nature) are fixed during the correction
component of the game; only the receiver tries to correct her action.
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Figure 1. Basic correction game, with π = Rtn = γnu(s, a), and
u(s, a) = 1. N denotes nature, S denotes the sender, and R denotes
the receiver. µ ∈ [0, 1] is a probability. n is the “counter” that is
used to discount the rewards.

2. The Simple Correction Game: Cue-Reading

We begin by examining a correction game where the sender’s dispositions are
already fixed. This is, in effect, a cue-reading game, with the possibility for the
sender to attempt to correct the receiver’s action when her chosen action fails to
achieve coordination on that particular state.

We examine an 8× 8 cue-reading game. States are equiprobable, and the payoff
for success is u(s, a) = 1. The sender begins with dispositions such that

P (mi|sj) =

{
1 if i = j

0 else

Each run consists in 500 individual plays of the game.12 We examine the results of
1000 runs.13

We have two new parameters that can be varied. First, the probability, µ, with
which the sender and receiver repeat a failed play; second, the cost for repetition, γ.
To get a reasonable picture of how these parameters affect learning in the underlying

12Note that this is an extremely low number of plays, but individuals learn quickly under rein-

forcement learning when the sender’s dispositions are already fixed. In an 8×8 cue-reading game,
after 10, 000 plays, the sender and receiver have a cumulative success rate greater than 0.95 on
almost all (0.975) of the runs, and every run results in a cumulative success rate greater than

0.90. As such, signalling systems are guaranteed in a fairly short amount of time in this particular
case—thus, we examine shorter-run results to see whether we cannot arrive at signalling even

faster with correction. The question of partial pooling is less of a concern here.
13The simulations were run in Python 2.7, and the resultant data was compiled using MatLab.

Source code for the correction game can be found here: [INSERT GITHUB LINK].
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cue-reading game, we examine the 16 combinations of µ = [0.25, 0.50, 0.75, 1.00] and
γ = [0.25, 0.50, 0.75, 1.00].

2.1. Results. We must be careful in interpreting the results of our simulations.
What is common is to calculate the cumulative success rate of a particular run by
simply counting the number of plays where the sender and receiver successfully
coordinated and dividing this by the total number of plays. Early failures get
washed out as the number of plays per run increases. We can then examine the
proportion of runs that have a cumulative success rate surpassing some threshold.

However, the threshold for success is not arbitrary. The 8× 8 cue-reading game
has a large number of partial pooling equilibria. These are polymorphic traps where
the sender and receiver might get caught. The most efficient sub-optimal strategy
for the reciever (given the sender’s dispositions are fixed in the cue-reading game)
occurs when she performs the appropriate action for 7/8 of the signals, and pools
her strategy on the 8th signal. These pooling equilibria allow for a maximum
communicative success rate (and a maximum expected payoff) of 0.875. Thus, we
ought to set our threshold for success at 0.875 to see whether the sender and receiver
have escaped these polymorphic traps.

However, we note that when mu = 1, the receiver will necessarily retry actions
until she hits upon a successful action. Thus, we should expect that for µ = 1,
the sender and receiver will always surpass the threshold for success. Indeed, this
is exactly what happens (after 1000 plays per run), as shown in Table 1. More
complete data are shown, for comparison, in Figure 2.

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.000
Repetition 0.25 0.000 0.000 0.000 0.000
Probability 0.50 0.003 0.021 0.082 0.214

µ 0.75 0.954 0.999 0.999 1.000
1.00 1.000 1.000 1.000 1.000

Table 1. Proportion of successes for short-run simulation re-
sults for correction game with pre-evolved sender dispositions (cue-
reading) under a variety of discount factors and repetition prob-
abilities (103 plays per run, 1000 runs). A run is counted as a
success if the proportion of successful plays for that run in greater
than 0.875

However, one might worry that the cumulative success rate is not accurately
capturing successes in the cue-reading game with correction since 103 plays is really
103 + C plays, where C is the number of repeat attempts at success which take
place on a given run. The average number of repetitions in each case is shown
in Table 2. This further highlights the effects of cost-less correction—because the
accumulated rewards are shifted more for lower-cost correction, the likelihood of
choosing the correct action in a future play is increased more than when correction
is expensive. (For example, a reduction in the number of repetitions when the
sender is guaranteed to try to correct the receiver’s behaviour (µ = 1.00) implies
that the sender and receiver are failing to coordinate less often; here, we see a



THE CORRECTION GAME 9

65 70 75 80 85 90 95 100

Success Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f 
R

u
n
s
 A

b
o
v
e
 T

h
re

s
h

o
ld

Atomic

 = 0.25

 = 0.50

 = 0.75

 = 1.00

 = 0.25

 = 0.50

 = 0.75

 = 1.00

Figure 2. The proportion of successful runs above thresholds
[0.65, 1.00] shown for each combination of parameters, [µ, γ]. The
vertical dashed lines indicate the thresholds 0.80, and 0.875, re-
spectively

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0
Repetition 0.25 78 76 73 70
Probability 0.50 176 161 149 138

µ 0.75 303 264 228 199
1.00 484 386 307 247

Table 2. Average number of repetitions made in the cue-reading
correction game

monotonic decrease in repetitions as the cost for repetition decreases) In the worst
case, we see almost a 50% increase in “plays”.

There is perhaps good reason not to interpret our data this conservatively: for
one, a repeat does not actually constitute a full play of the game to the extent that
no new state nor signal is chosen during a repeat. Even so, we can correct for this
in the following way.

The simulations were re-run, and new data was gathered thus. The sender and
receiver are allowed 500 plays to try to learn a signalling convention. We then let
them communicate according to whatever convention they have settled upon (or
begun to settle upon) for 1000 plays. We count successes and failures during the
communication period only, not during the learning period—thus, we ignore the
failures that occur during learning. This approximates the expectation of success
in the same way as looking at the urn contents after 500 rounds and calculating the
exact expectation. Since the strategies that evolve are going to vary stochastically,
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we take an average of 1000 runs. The adjusted success rates for 1000 runs under
this success measure are shown in Table 3. The data vary significantly from those

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.000
Repetition 0.25 0.006 0.017 0.040 0.091
Probability 0.50 0.017 0.089 0.371 0.701

µ 0.75 0.045 0.359 0.874 0.991
1.00 0.113 0.752 0.995 1.000

Table 3. Adjusted proportion of successes for short-run simula-
tion results for correction game with pre-evolved sender disposi-
tions (cue-reading) under a variety of discount factors and repe-
tition probabilities (5 × 102 plays per run, 1000 runs). A run is
counted as a success if the proportion of successful plays for that
run in greater than 0.875

of Table 1. In particular, there is less pooling across all discount factors when
the correction probability µ = 0.25, 0.50, whereas more pooling (than the data
in Table 1) appears to be exhibited for more probable repetitions, µ = 0.75, 1.00.
However, we should note three things here: first, there are half as many plays where
learning occurs (500 as opposed to 1000); second, initial miscoordination during
learning is not counted in the latter case—thus, we should expect slightly more
successes than if initial failures are counted; finally, since the sender and receiver
do not take advantage of the correction capacity during the communication period,
successes here really do constitute successes.

The general qualitative results still hold: fixing the discount factor, γ, an increase
in µ corresponds to an increase in success; fixing the repetition probability, µ, a
decrease in cost for repetition also corresponds to an increase in success. Thus,
these results are robust regardless of what one counts as a success. Again, more
complete data are shown, for comparison, in Figure 3. Note that the successes
for the atomic case are shifted up, since we are not counting the initial failures
during the learning period. The data is less clearly differentiated; however, again,
holding fixed one parameter, we see a monotonic increase in successes as we vary
the other parameter (either holding fixed the cost and increasing the probability of
correction, or holding fixed the probability and decreasing the cost).

We might note that this cue-reading game with correction is really only half of the
model suggested by the story at the outset. Correction (modelled as a pre-evolved
“yes/no” meta-game) only occurs when the receiver fails to coordinate with the
sender’s intended meaning. This is the “no” component: the receiver is corrected
with some probability only when she does something wrong. We might add the
“yes” half of the correction as follows: suppose the receiver coordinates on the first
try; with some probability, µ, the sender further reinforces this behaviour by telling
the receiver that she did something right, by using their pre-evolved disposition.
Thus, the receiver receives an additional payoff, given by γ ·u(s, a). Note that there
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Figure 3. The adjusted proportion of successful runs above
thresholds [0.75, 1.00] shown for each combination of parameters,
[µ, γ]. The vertical dashed lines indicate the thresholds 0.80, and
0.875, respectively

is no repetition when the action is successful, so there is a one-shot reinforcement,
which occurs with probability µ.14

In this case, even under the worst parameter combinations, every combination
of parameters resulted in 100% of the runs exceeding the pooling-threshold cumu-
lative success rate of 0.875 after only 500 plays. Indeed, most combinations do
significantly better than this. The proportion of runs resulting in a cumulative
success rate greater than 0.95 are shown in Table 4.15

This model was built upon a cue-reading game, rather than a signalling game;
thus, the sender’s dispositions were fixed at the outset. Can the sender and receiver
co-evolve their strategies, while taking advantage of their pre-evolved corrective
dispositions?

3. The Simple Correction Game: Signalling

In this section, we examine the effects of combining the possibility for correction
with the full signalling game, as opposed to the asymmetric cue-reading game.
However, some care is required here. If the sender and receiver begin correcting too
early, then correction will obviously not help them to evolve a signalling convention,
because the sender would effectively be trying to correct the receiver’s behaviour

14We might imagine that the normal payoff for coordination is given by nature, as is the case in
the atomic signalling game, whereas this additional payoff is given by the sender; however, it need

not be the sender who tries to correct the receiver’s behaviour—see the discussion in Section 5
below.
15Note the increase in the success threshold; every run results in 100% of the plays having a
cumulative success rate greater than 0.9 (and so greater than 0.875). No pooling whatsoever

occurs after 500 plays.
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Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.000
Repetition 0.25 0.670 0.792 0.877 0.933
Probability 0.50 0.820 0.950 0.981 0.998

µ 0.75 0.883 0.987 0.999 1.000
1.00 0.947 0.994 1.000 1.000

Table 4. Adjusted proportion of successes for short-run simula-
tion results for correction game (“yes” and “no”) with pre-evolved
sender dispositions (cue-reading) under a variety of discount fac-
tors and repetition probabilities (5×102 plays per run, 1000 runs).
A run is counted as a success if the proportion of successful plays
for that run in greater than 0.95

while she is still not yet fixed upon what her signal actually means. Early on, she
might use m0 to mean s0, and correct the receiver when she chooses an act other
than a0. However, later in the game she might use m0 to mean s1. The propensities
are highly variable at the outset. Thus, we must allow the sender and receiver to
start to learn a signalling convention before they can utilise the correction game.
Unfortunately, the answer to the previous question is decidedly: no. The efficiency
seen in the cue-reading game with correction does not generalise to the signalling
game, so the results here are limitative. Even so, what happens is somewhat subtle,
so it is worth going through with some care.

3.1. Results. Here we examine the short-term results for a simple correction game
built on top of a full atomic 8-game, under a variety of parameters. States are
equiprobable, and the payoff for success is u(s, a) = 1. Each run consists in 105 in-
dividual plays of the game, and we examine the results of 1000 runs. The sender and
receiver are allowed a learning period of 25, 000 plays prior to trying to correct be-
haviour using their pre-evolved dispositions. Again, we examine the correction game
with 16 combinations of µ = [0.25, 0.50, 0.75, 1.00] and γ = [0.25, 0.50, 0.75, 1.00].
Again, when either µ = 0 or γ = 0, the correction game is equivalent to the atomic
signalling game. In the former case, the probability of repetition is 0, so the sender
and receiver never retry. In the latter case, any number of repetitions results in a
payoff of 0, so even if the sender and receiver repeat until a success, they do not
reinforce on that success.

The cumulative success rates, with a threshold of 0.875 for success, of these
several parameters are shown in Table 5. In general, it appears that correction helps
the sender and receiver to learn a signalling convention; however, this is again under
the assumption that a “success” is just coordination on a given play, ignoring the
repetitions. Thus, when the repetition probability is 1 the proportion of successes
is going to trivially be 1—the sender and receiver repeat a failure until it turns into
a success. We can obtain more accurate results of whether the sender and receiver
are avoiding pooling by examining their success during a communication period,
after an initial learning period.

Successes are re-calculated as follows: The sender and receiver have an initial
learning period of 25, 000 plays where they learn atomically. They learn for the
rest of the 105 plays by using correction. Finally, we count successes during a
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Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.331
Repetition 0.25 0.413 0.432 0.406 0.428
Probability 0.50 0.765 0.812 0.805 0.765

µ 0.75 0.917 0.914 0.901 0.892
1.00 1.000 1.000 1.000 1.000

Table 5. Proportion of successes for short-run simulation results
for correction game under a variety of discount factors and repeti-
tion probabilities (105 plays per run, 1000 runs). A run is counted
as a success if the proportion of successful plays for that run in
greater than 0.875

1000-play “communication period”, which approximates the actual expectation of
success; results of 1000 runs are examined. These adjusted data are displayed in
Table 6 Note, first and foremost, that the success in the atomic case are increased.

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.548
Repetition 0.25 0.468 0.409 0.341 0.260
Probability 0.50 0.385 0.249 0.164 0.078

µ 0.75 0.349 0.183 0.037 0.000
1.00 0.279 0.076 0.000 0.000

Table 6. Adjusted proportion of successes for short-run simula-
tion results for correction game with co-evolved sender dispositions
(signalling) under a variety of discount factors and repetition prob-
abilities (105 plays per run, 1000 runs). A run is counted as a
success if the proportion of successful plays for that run in greater
than 0.875

This is because we are not counting the failures during the initial learning period.
In comparison to the atomic game under this success measure, the correction game
does categorically worse. In a way, however, this makes sense. The sender is
correcting behaviour without herself knowing what a signal is supposed to mean.
Thus, correction is too aggressive. Note also that the correction game here performs
worse when the cost for payoff is decreased. This is the opposite of what happens
in the cue-reading game. Again, this is because cost-less correction has a larger
effect on propensities, which, we have now seen, is detrimental when the sender’s
disposition is not yet fixed. This is further highlighted by the fact that the number
of repetitions increases as the cost of repeating goes down in the full signalling
game. The average number of repetitions in each case are shown in Table 7.

We are obtaining a clearer picture of how and when correction, in the form of a
pre-evolved disposition, might positively affect learning a new disposition. In the
cue-reading game, the sender is determined that the signal means such-and-such, so
correction is appropriate. In the signalling game, she is also learning a conventional
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Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0
Repetition 0.25 2136 2158 2199 2154
Probability 0.50 4608 4459 4572 4731

µ 0.75 6889 6924 7223 7534
1.00 9409 10044 10317 12239

Table 7. Average number of repetitions made in the signalling
correction game.

meaning for her signals, so it makes little sense for her to insist very early on that
the receiver has done something wrong. This is further highlighted by the fact
that, when we include the “yes” component, so that the sender reinforces correct
behaviour on the receiver’s part, the results are even than those in Table 6. This is
because the correcting behaviour on the full correction game is even more aggressive
than the behaviour on the correction game with only the “no” component.

However, these results are more subtle than just that they fail to help avoid
pooling. In particular, in spite of the fact that the sender and receiver end up
pooling their strategies more often when the sender is too aggressive, the expected
payoff remains largely unchanged in every case. These data are shown in Table 8
The variance between the expected payoff between these 1000 runs is effectively

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.8982
Repetition 0.25 0.8975 0.8961 0.8926 0.8944
Probability 0.50 0.8910 0.8927 0.8890 0.8844

µ 0.75 0.8936 0.8909 0.8850 0.8780
1.00 0.8947 0.8849 0.8797 0.8587

Table 8. Average expected payoff for short-run simulation results
for correction game under a variety of discount factors and repeti-
tion probabilities (105 plays per run, 1000 runs).

equivalent—approximately 0.005—in every case. Indeed, when the sender and re-
ceiver escape pooling equilibria the correction game does no worse than the atomic
signalling game. However, they tend to get caught in pooling more often the more
aggressive the sender is in trying to correct the receiver’s behaviour.

If we decrease the initial period in which the sender and receiver learn atomically,
they do even worse still. This is because their dispositions are even less fixed than
when they start out with a period of atomic learning. If we increase the initial period
where they learn atomically, then, as the period of atomic learning approaches the
total number of plays, the results limit toward the atomic results. Thus, it is not
possible that the sender and receiver do better than the atomic case when they
have a pre-evolved corrective disposition at their disposal. The best they can do is
as good as the atomic case.
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4. The Simple Correction Game: Signalling With Invention

The reason why the results of the general signalling game were limitative, it
was suggested, is because the sender is unwarranted in attempting to correct the
receiver’s behaviour: she is also learning what the signals mean, and so it makes
little sense for her to insist upon a particular meaning at the outset when the
meanings of the signals are still fluctuating. In this section we examine the general
signalling game with invention, which is a modified version of the Hoppe-Pólya urn
model (Hoppe, 1984) of neutral evolution—where many mutations do not convey a
selective advantage.16

In the atomic case, the signalling game with invention works in this way. Suppose
we have 8 states of nature and 8 appropriate actions. The sender begins with no
signals; she has 8 urns for each of the states, and each urn contains one black ball—
the mutator. The receiver begins with no urns. On a particular round, nature picks
a state of the world with some probability—again, we assume nature is unbiased
so each state is equiprobable. When the receiver sees the state, and selects a ball
at random from the corresponding urn. If she selects the black ball, she invents
a new signal, by placing a ball for that signal in the urn. This is the signal that
she sends to the receiver. The receiver is attentive to new signals: when the signal
sent is novel, she creates a new urn for that signal, containing 8 balls for each of
the possible actions and then selects an act from that urn. When the sender and
receiver coordinate, they reinforce by adding another ball of the same type to the
urn from which it was chosen. The game is then repeated with a new state of
nature. This is a Hoppe-Pólya urn model with differential reinforcement.

Note that the sender never reinforces her propensity to invent, so the rate at
which the sender invents new signals decreases over time. Thus, when a state of
nature is seen for the first time, the sender invents a signal to communicate with the
receiver. If they coordinate, then there is a 2/3 probability in the future that the
same signal will be sent in that state, and 1/3 probability that a brand new signal
will be invented in that state. If they miscoordinate, then there is a 1/2 probability
that the sender will retry the same signal in that state, and 1/2 probability that
the sender will send a new signal in that state.17

4.1. Results. Here we examine the short-term results for the full correction game
built on top of a full atomic 8-game, with invention, under a variety of parameters.
The sender begins with no signals. States are equiprobable, and the payoff for
success is u(s, a) = 1. Each run consists in 1.5× 104 individual plays of the game,
and we examine the results of 1000 runs. The sender and receiver we begin with
no atomic learning period, since this was the worst-case in the general signalling
game with correction. Again, we examine the correction game with 16 combinations
of µ = [0.25, 0.50, 0.75, 1.00] and γ = [0.25, 0.50, 0.75, 1.00], as compared with the
atomic signalling game with invention.

The sender and receiver learn signalling dispositions with invention over the
course of 1.5×104 individual plays, and then, to gain a more accurate representation
of what counts as a success, they communicate for 1000 plays, and we calculate the
average number of successes over the course of the communication period, where the

16See also the discussion in Skyrms (2010); Alexander et al. (2012).
17This is related (though due to the differential reinforcement not equivalent) to the Chinese
Restaurant Process; see, e.g., (Aldous, 1985; Pitman, 1995).
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threshold for success is 0.875. These results are shown in Table 9. As opposed to the

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 0.071
Repetition 0.25 0.166 0.378 0.528 0.664
Probability 0.50 0.316 0.551 0.547 0.409

µ 0.75 0.446 0.518 0.025 0.004
1.00 0.495 0.313 0.007 0.000

Table 9. Adjusted proportion of successes for short-run simula-
tion results for correction game (“yes” and “no”) with co-evolved
sender dispositions (signalling) plus invention under a variety of
discount factors and repetition probabilities (1.5 × 104 plays per
run, 1000 runs). A run is counted as a success if the proportion of
successful plays for that run in greater than 0.875

atomic signalling game, where the sender’s unjustified aggressiveness in correcting
the receiver is detrimental to them both, we see that correction again helps the
sender and receiver to coordinate, when the correction is not too often and not too
inexpensive. In the case where the sender always tries to correct the receiver, and
correction is cost-free, they do worse. Again, this should be unsurprising, given that
the sender and receiver are still learning to coordinate. Thus, the sender’s being
too aggressive is still detrimental to them both; however, in almost every other
case, correction has a significant impact on learning to signal. More complete data
are displayed in Figure 4. We look more closely at the results that are beneficial
in Figure 5, centred about the success threshold. Correction almost always helps
when the sender invents new signals.

However, it is also known that inventing new signals can help to avoid pooling
equilibria in general (Alexander et al., 2012). There are further subtleties to the
signalling game with invention; we can look at the average number of signals in-
vented in each case to see how efficiently the sender is inventing while the sender
and receiver are learning. The average number of signals invented in each case are
shown in Table 10. As is evident, correction not only helps the sender and receiver

Discount Factor, γ
0.25 0.50 0.75 1.00

Atomic 89, (100.00%)
Repetition 0.25 83, (93.25%) 80, (89.89%) 74, (83.15%) 69, (77.53%)
Probability 0.50 78, (87.64%) 69, (77.53%) 62, (69.66%) 57, (64.04%)

µ 0.75 70, (78.65%) 59, (66.29%) 47, (52.81%) 38, (42.70%)
1.00 72, (80.90%) 58, (65.17%) 48, (53.92%) 38, (42.70%)

Table 10. Average number of signals at the end of 1.5×104 plays
of the signalling game with invention across a variety of parameters,
and comparison with atomic case

to avoid pooling equilibria, it helps them to do so more efficiently—i.e., by creating
fewer signals at the outset. In the best case in terms of proportion of successes
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Figure 4. The proportion of successful runs above thresholds
[0.25, 1.0] shown for each combination of parameters, [µ, γ], com-
pared with the atomic game. The vertical dashed lines indicate the
thresholds 0.80, and 0.875, respectively. The atomic case is bold
for clarity.
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Figure 5. The proportion of successful runs above thresholds
[0.8, 0.95] shown for each combination of parameters, [µ, γ], com-
pared with the atomic game, and centred about the pooling thresh-
old, 0.875 (dashed vertical line)

([µ, γ] = [0.50, 0.75]), they are almost 8 times more successful than in the atomic
case, and they are able to achieve this rate of success more efficiently, with 2/3 the
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number of signals. With about half of the signals, they are able to coordinate more
than 3 times as often than in the atomic case ([µ, γ] = [0.75, 0.75]).

Note further that the invention of signals captures a notion of communicative
development which is diachronic rather than synchronic. One charge against the
assumptions in the signalling game model is that the sender and receiver start with
a fixed number of messages (Hurford, 2012). The correction game from signalling
with invention captures a subtle process, which we might take to be more realistic
than the signalling game with fixed signals, in the following sense. The sender,
might invent a signal for representing a particular state. When the sender invents a
new signal, holding everything else fixed, she is not just choosing randomly; rather
she is creating for the purpose of communicating a particular thing. If the receiver
fails to understand, it stands to reason that, again, holding everything fixed, the
sender might insist.

5. Discussion

In summary, correction is helpful in several cases, though this is not universally
true. I repeat the claim made at the outset: this process presupposes little over and
above the standard signalling game, as far as cognitive sophistication goes. When
the sender tries to communicate that the receiver does X, and the receiver fails
to understand the meaning of X, the sender corrects—“no, no no, do X!”—the
meaning of X is still unknown, but the meaning of no is known, by the pre-evolved
disposition. Thus, the receiver communicates perfect information that the action
tried was incorrect, but the receiver still needs to learn which act is correct.

When the sender has pre-evolved dispositions, correction not only helps to avoid
pooling equilibria in the 8 × 8 case, but it allows the receiver to learn how to
coordinate to the sender’s fixed disposition very quickly—in the best case, the
sender and receiver have surpassed the pooling threshold every time after only 500
plays.

However, these results do not generalise to the signalling game, where the sender
and receiver both learn their dispositions at the same time. This should not come as
a surprise—early on in the game, when the sender’s dispositions are highly variable,
it makes little sense for her to insist that the receiver has done something wrong.
Even in this case, however, those runs that surpassed the pooling threshold perform
no worse than in the atomic case. This highlights that correction is helpful, as long
as the sender knows what it is that she is correcting.

Finally, in the signalling game with invention, we saw that correction once again
has a significant impact on learning, both in terms of speed and avoiding pooling
equilibria, in most cases. The caveat here is that if the sender is too aggressive in
trying to correct behaviour, it can be detrimental to learning; however, correction
was only detrimental in two cases: when the sender always or almost always corrects
the receivers behaviour, and there is no cost to correction. In every other case,
correction helps learning. Furthermore, the sender and receiver are able to learn
to signal more efficiently in the sense of requiring fewer synonymous signals: often,
the end up inventing between 2/3 and 3/4 of the signals invented in the atomic
case.

Note also that we interpreted the correction model as the sender correcting
the receiver. However, nothing necessitates this interpretation. Indeed, in social
animals correction may not be done by the sender, but rather by a conspecific who
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is a bystander. This may occur in the case of adults correcting juveniles.Thus, there
are several different interpretations that are allowed by the generality of this model.
Each of the agents in the model may be understood as functional components of a
social group or of an individual agent.18 Further, the agents in the meta-game need
not be the same as the agents in the base game. We might imagine an observer
watching a signalling interaction, keeping track of what signals and actions are
correct given the conventions of the agents in the base-game, and occasionally
correcting those actions that are inconsistent with previous behaviour.

5.1. Relation to Previous Work. It was assumed in every case that the cor-
rection game involved a pre-evolved disposition, of which the sender variably takes
advantage. We might wonder whether the sender and receiver can co-evolve this
disposition as they are learning to signal.

Barrett (2016) examines how a metalanguage might co-evolve with the language
it describes. In the first model he describes, the meta-game co-evolves to indicate
the success and failure of the base-game agents as they evolve signalling dispositions,
in the sense of the atomic signalling game. In the second model he describes, the
sender attends to the co-evolving conventional use of expressions in the base game.
Thus, the meta-game evolves to track whether the expressions of the base-game
are true (in a simple pragmatic sense), and so provides a sense in which the base
language might be understood to have evolved propositional content (1–2).

The base game that Barrett (2016) describes is an atomic 4-game, where the
agents evolve their dispositions under simple reinforcement learning. The meta-
game is an atomic 2-game, which takes the success or failure of the sender and
receiver in the base-game as input. The meta-game sender and receiver also learn
by simple reinforcement. The state of nature, which the sender observes, may be
obtained either by looking at the state and act of the base-game to see whether
they match or examining whether or not the sender and receiver in the base-game
received a payoff, for example. Actions in the meta-game correspond to success or
failure, and the meta-game sender and receiver reinforce just in case the meta-game
receiver’s action matches the meta-game state. Thus, the meta-game agents learn
from their observations of the evolving dispositions of the base-game agents. Barrett
(2016) reports that on simulation, the meta-game receiver exhibits a cumulative
success rate of better than 0.95 on better than 0.99 of the runs of the model, with
1000 runs of 106 plays per run.

This may seem unsurprising, given the results of Argiento et al. (2009) for the
atomic 2-game. However, what happens here is slightly more subtle: Barrett (2016)
points out that even the 2 × 2 signalling game can get stuck in sup-optimal pool-
ing equilibria when nature is biased.19 This is relevant because as the base-game
evolves, the successes become more frequent. But the input (nature) in the meta-
game is just the successes and failures of the base-game; thus, nature in the meta-
game is unbiased at the outset, but becomes biased as the base-game evolves.
Nature in the meta-game is strongly biased toward success over time.

Even so, the base game is more complicated than the meta-game. Therefore, the
meta-game evolves more quickly than the base game. Hence, by the time nature in
the meta-game becomes strongly biased toward success, the meta-game sender and

18See Barrett et al. (2018).
19See the discussion in Skyrms (2010). See Hofbauer and Huttegger (2008) for a proof in the

context of the replicator dynamic.
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receiver have already evolved a signalling system, which clearly demarcates the two
input states. This happens 0.98 of the time, with 1000 runs of 106 plays per run.20

It was assumed, in this paper, that the sender and receiver in the correction
game have already evolved a disposition to successfully communicate some binary
“yes/no” signal. In the correction game, they use this pre-evolved disposition to
try to correct the receiver’s action when the sender and receiver miscoordinate.
I take the results of Barrett (2016) to be sufficient for an affirmative answer to
the question of whether or not the correction meta-game can co-evolve alongside
the signalling game. The set up for a co-evolutionary correction game, where the
meta-game agents learn the “yes/no” signalling disposition where the input (states
of nature) for the meta-game are given by the success of failure to coordinate in
the base-game, is almost equivalent to the “true/false” model that Barrett (2016)
presents. The main difference in the correction game is that the output of the
meta-game also affects the dispositions in the base game. However, we can imagine
that the meta-game evolves in the atomic period of the correction game. Since
the meta-game is significantly less complex than the base-game, the meta-game
will evolve faster. Thus, by the time the sender and receiver start to utilise their
dispositions, they should have already coordinated upon a signalling convention in
the meta-game.

However, due to the subtleties described in Barrett (2016), these results will
also be limitative: the meta-game will not necessarily evolve for significantly more
complex base-games, like the 8 × 8 signalling game. This is because, in this case,
there are 816 (almost 300 trillion) possible combinations of strategies, but only
8! (slightly more that 40, 000) of these are signalling systems. At the outset, it is
significantly more probable that the input for the meta-game will be a failure rather
than a success (0.875 in the atomic case).

Indeed, when we examine the co-evolution of a 2 × 2 meta-game that tracks
truth and falsity, taking successes and failures from the atomic 8 × 8 base game
as input, only around 20% of the meta-game plays surpass the pooling threshold
of 0.75.21 However, what is typical here is that the sender perfectly partitions the
states of nature (success and failure) by the two available signals, and the receiver
learns the meaning of the failure signal, but is indifferent between her actions for
the success signal. Thus, as successes become more frequent, it is probable that
she will eventually learn the meaning of this signal—that is, she does not bias her
action toward “failure” for each signal. This is for the atomic 8-game. It remains to
be seen whether or how the signalling game with invention affects these meta-game
propensities, given that the output of the meta-game feeds back in to the base
game.

5.2. Affirmation and Negation from a Linguistic Perspective. Why is this
particular pre-evolved disposition relevant to the evolution of communicative ca-
pacities? Negation is a universal category of human language Dahl (1979)—every

20In a second model, the meta-game sender tracks whether the base-game sender used the signal
that is customary, given what the agents in the base game have been doing. This simple game

can be extended to include the co-evolution of a pragmatic sense of probability; such a model is
discussed further in Barrett (2017).
21This is for 25, 000 plays per run and 10, 000 runs—corresponding to the atomic learning period
in the model presented in Section 3. However, the results are essentially equivalent when we

increase this to 107 plays per run.
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natural language, at least, to express clausal negation; however, the way that dif-
ferent languages negate varies. In English, and other indo-European languages,
sentence negation is frequently realised by the negative participle “not”.22 For
example,

(1a) Atlas believes that Sarah is not home.
(1b) Atlas does not believe that Sarah is at home.

In some languages, however, sentence negation is expressed by a negative verb.
For example, in Tongan, the negator ikai acts as a higher verb which takes the
corresponding affirmative clause as its complement, and ke is a subjunctive marker,
which marks the complement clause as subordinate (Churchward, 1953, 56):

(2a) na"e "alu "a siale.
pst go abs Siale

‘Siale went.’
(2b) na"e "ikai ke "alu "a siale.

pst neg sbjn go abs Siale
‘Siale did not go.’

However, Miestamo (2007) notes that this type of negation is marginal.
Along with truth-functional negation, a large range of word-formation processes

can be used to coin negative meanings. For example, in English, these word-
formation processes include prefixation, suffixation, compounding and conversion.
Morphologically, negation is quite complicated. For example, in English negation
may be expressed through a number of negative derivational affixes: de-, dis-, in-,
non-, un- and -less.

In most languages, negation systematically either precedes or follows the verb.
Dryer (1988) studies the placement of the marker of sentential negation in relation
to the subject (S), object (O) and verb (V)—three main clausal elements—in a
worldwide sample of 345 languages. His results suggest that SOV languages are
most commonly either SOVNeg or SONegV. NegSOV and SNegOV languages are
infrequent. SVO languages are most commonly SNegVO, and V-initial languages
are almost always NegV (i.e. NegVSO or NegVOS). In 70% of the 325 languages
surveyed, Dryer (1988) finds that the negation marker is placed before the verb.23

It has been claimed that no animal communication system has a notion of nega-
tion (Horn, 1989; Jackendoff, 2002). Even so, it is suggested that some variety
of pre-logical negation might be available in the cognitive representation of higher
animals—this is consistent with the view that non-human animal communication
systems lack recursion (Hauser et al., 2002); bona fide truth-functional negation in
natural language is recursive to the extent that, semantically, it takes an arbitrary
proposition, φ, and creates a new proposition, ¬φ, where φ may itself be a negated
proposition.

Negation, in natural languages, is complex for a variety of reasons. First, the
logic of affirmation and negation is asymmetric: negations are generally less valu-
able, less specific, and less informative than affirmations (Plato, 1921). Aristotle
(1995) held that affirmations have ontological, epistemological, psychological, and

22This is typically referred to as “standard negation”. This terminology originates in Payne

(1985).
23See also the discussion in de Swart (2010).
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grammatical priority over negations (996b1416). Further, negations are morphosyn-
tactically more marked, and psychologically more difficult to parse (Just and Car-
penter, 1971; Horn, 1989). In some sense, negation presupposes affirmation: “the
feeling is as if the negation of a proposition had to make it true in a certain sense
in order to negate it” (Wittgenstein, 1953, §447).24 Finally, affirmation usually in-
troduces a proposition into the “discourse model”, whereas negation—in its “chief
use” (Jespersen, 1917, 4), its “most common use” (Ayer, 1952, 39), its “standard
and primary use” (Strawson, 1952, 7)—is directed at a proposition that is already
in, or that can be accommodated by, the discourse model.25

Proto-languages need not contain propositions nor truth-functions, though these
would at least need to emerge somewhere in the transition from proto-language to
language. In a review of the relevant literature, Heine and Kuteva (2007) suggest
that trained animals are able to develop notions of rejection and refusal, and even
of non-existence.26

In addition to the omnipresence of negation in natural languages, negation and
affirmation may have evolved early on, and so serve as linguistic “fossils” of a one-
word stage of the evolution of language, wherein single utterances serve holophrastic
purposes and are not integrated into a larger combinatorial system (Jackendoff,
1999).27 It is irrelevant that no known animal communication system contains a
generalised negation; rather, what is important is the signal understood as a proto-
command of encouragement or negation.

Several such one-word utterances exist in language: Jackendoff (1999) points
to sudden, high-affect utterances, such as ouch!, dammit!, wow! and oboy!, and
suggests that

These exclamations have no syntax and therefore cannot be inte-
grated into larger syntactic constructions[.] . . . They can remain
in the repertoire of the deepest aphasics, apparently coming from
the right hemisphere. There also exist situation-specific utterances
such as shh, psst, and some uses of hey that have almost the flavor
of primate alarm calls. Though the ouch type and the shh type
both lack syntax, they have different properties. . . . Further single-
word utterances include the situation-specific greetings hello and
goodbye and the answers yes and no.

Hurford (2012) highlights the fact that such one-word phrases (along with pragmatic
inference) allow for the possibility of conveying propositional information without
the benefit of syntax.

This is specifically the type of linguistic fossil that is suggested by a pre-evolved
disposition for correction.

5.3. Future Work. There are several variants of this simple correction model that
might be of interest. For example, it was supposed that if the sender and receiver
abandon an attempt to correct after n repetitions, then they receive a payoff of 0.
However, we might suppose that there is a (time/effort) cost for correction, such

24See also Givón (1978).
25See also the discussion in Horn and Wansing (2017).
26See also Patterson (1978); Premack and Premack (1983); Herman and Forestell (1985); Savage-

Rumbaugh (1986); Pepperberg (1999); Zuberbühler (2002).
27See also the discussion in Progovac (2015).
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that the payoff is discounted even when the repetitions do not end in a success—
i.e., the result is a negative payoff when the sender and receiver attempt to correct
action and fail repeatedly. This sort of extension incorporates varying punishment
for failure to coordinate in the same way that the correction game incorporates
a varying (positive) payoff as a function of the number of repeat attempts made.
This amounts to varying a parameter of the underlying model; several other such
extensions could be made. For example, we might vary the initial payoff, u(s, a),
or we might add a punishment parameter for failure, even when the attempt is not
repeated, and then vary the punishment to increase with an increase in repetitions.
This is in addition to the usual parameters that might be varied—e.g., the dimension
of the game, the underlying dynamic itself, including punishment in general, etc.
In this case, we used a single, well-studied dimension and the simplest learning
dynamic for illustrative purposes.

There are several questions that arise, with respect to analysis of the model
that was presented here. For example, we might look at different choice rules for
how the receiver chooses her action in the event of a repetition. It was supposed
that the receiver reduces the set of possible actions by abandoning previous actions
that resulted in a failure to coordinate. This was taken to be the most parsimo-
nious decision for how the sender and receiver play this modified signalling game:
given that we assume that the sender and receiver have already coordinated on
a “yes/no” signal, it makes sense that the receiver would “understand” that she
should not re-try the action that led to a failure. However, we might relax this
assumption by allowing the receiver to randomise over the entire set of possible
actions repeatedly—this might be plausible to the extent that individuals might
keep trying something that was incorrect even when they are told it is incorrect.

In this case, there is some nonzero probability that the correction cycle will
continue indefinitely, for any µ > 0—especially as µ gets arbitrarily close to 1.
Note that the probability on a given round that the sender and receiver end up in a
loop of repetitions is 0, in the limit.28 However, for any particular n, the probability
that they miscoordinate n times in a row has non-zero probability.

Nonetheless, in the case of getting caught in pooling equilibria, the probability
that the sender and receiver get caught in such an infinite loop may increase greatly.
Thus, in terms of modelling, we might want to have an upper bound on how many
times the sender bothers to try to correct the action of the receiver. Note that,
given the modelling assumptions that were made in this paper, there will always
be a maximum number of repetitions possible—namely, (n− 1) times for the n×n
game.

Finally, we assumed a fixed µ and γ for any particular set of simulations that were
run; there may well be an optimal combination of parameters. Another extension
would be to see whether or not the sender and receiver can coordinate on such an
optimal combination. That is, we might model the game in a way such that the

28For this particular case (the 8 × 8 correction game), assume the probability of repetition is 1;

then, for example, at the outset when all dispositions are equiprobable, the probability that the
sender and receiver miscoordinate, given a fixed state and signal, is 7/8. Thus, the probability

that they miscoordinate n times in a series of n repetitions is
(
7
8

)n
, since each miscoordination is

independent of anything that has happened previously. Further,

lim
n→∞

(
7

8

)n

= 0

.
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sender learns a probability parameter for attempting to correct µ. This will likely
be most effective when µ is very low to start—to allow the sender and receiver to
begin moving toward a coordination equilibrium—and then gradually increasing
as time goes on. It might be the case that when the sender only tries to correct
the receiver’s behaviour when it is salient to do so.29 For example, it might be
more salient to try to correct when the sender has already clearly differentiated a
particular signal, though the meanings of the other signals may still be in flux.

While this is all certainly food for thought, the purpose of this paper was to show,
in one particular case, how the composition of games might allow for the more
efficient evolution of signalling dispositions. The correction game, as presented,
does precisely that.
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